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Machine learning strategies for predicting
Alzheimer’s disease progression
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Faculty of Computing, Engineering and The Built Environment, School of Computing, Engineering,
and Intelligent Systems, Ulster University, Londonderry, Ireland

Abstract

Alzheimer’s disease (AD) represents a significant global health challenge, affecting
millions of individuals worldwide through progressive cognitive decline and behavioral
changes. The burden extends beyond patients to caregivers and healthcare systems.
While traditional diagnostic methods pose financial obstacles, emerging non-imaging
techniques show promise. Machine learning has emerged as a transformative approach
for enhancing both diagnosis and management. This study aims to develop a robust
multi-class classification model using random forest (RF) and extreme gradient boosting
algorithms on non-imaging data from the Australian AD Neuroimaging Initiative,
with emphasis on the Australian Imaging, Biomarkers, and Lifestyle Study of Aging.
Extensive data analysis was conducted, including feature importance and selection,
to improve interpretability and classification accuracy. Synthetic oversampling was
applied to address class imbalance. The findings indicate the superiority of the tuned
RF model, achieving 90% in accuracy, precision, recall, and F1 scores. In addition,
cost-effective diagnostic variables were explored, with neuropsychology assessment
variables demonstrating exceptional accuracy (90%). This research contributes to early
AD detection, personalized treatment, and optimized resource allocation.

Keywords: Alzheimer’s disease; Machine learning; Python classification model;
Non-imaging data; Random Forest; Extreme gradient boosting; Australian imaging
biomarkers and lifestyle study of aging; Diagnosis

1. Introduction

Alzheimer’s disease (AD) represents a significant global health challenge, affecting
millions of individuals worldwide. This condition progressively impairs memory,
cognitive function, and behavior, ultimately leading to severe disability and death. AD
not only affects those diagnosed but also places considerable strain on caregivers and
healthcare systems, escalating the burden of care and resource allocation. Initially, AD
may manifest as mild forgetfulness, but it gradually progresses to encompass a wide
range of symptoms that deteriorate over time, subjecting both patients and their families
to a distressing trajectory of decline and loss. The emotional toll of AD extends beyond
cognitive impairment, significantly affecting the well-being of families and caregivers.
The continuous demands of caregiving challenge emotional resilience and endurance.
However, amidst these challenges, there is a shared commitment to confronting AD with
resolve and innovation.
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One significant obstacle in addressing AD is the high
cost associated with traditional imaging techniques and
diagnostic procedures. While these methods are beneficial,
they are often highly expensive for patients and healthcare
systems. Nevertheless, emerging alternatives, such as
genetic markers, neuropsychological assessments, and
biomarker analysis, show promise as more accessible
and cost-effective diagnostic tools.” By prioritizing these
non-imaging methods, the financial burden of diagnosis
may be alleviated, thereby broadening access to care for
individuals with AD.

In this landscape of challenges and opportunities,
machine learning (ML) has emerged as a transformative
tool. With its ability to process complex datasets and extract
valuable insights, ML holds the potential to improve AD
diagnosis and management. Through the utilization of
novel data and rigorous training, ML algorithms excel at
predicting outcomes and providing invaluable guidance for
decision-making processes. Moreover, ML enables earlier
disease detection and intervention, thereby contributing
to improved patient outcomes and enhanced quality of
life.’> The adaptability of ML models further allows for
continual refinement and optimization, ensuring ongoing
improvements in prediction accuracy and diagnostic
efficacy.

The primary objective of this study is to develop a
robust multi-class classification model for predicting
AD among three distinct groups: Healthy control (HC),
individuals with mild cognitive impairment (MCI), and
those diagnosed with AD. Leveraging non-imaging data
from the Australian AD Neuroimaging Initiative,* with a
particular emphasis on the Australian Imaging Biomarkers
and Lifestyle Study of Aging (AIBL),® this study utilizes
random forest (RF) and Extreme Gradient Boosting
(XGBoost) algorithms, along with their optimized
models. Through comparative analysis, the most
effective classification model is identified. In addition,
this study aims to enhance interpretability through
feature importance analysis and the evaluation of various
classifiers. These efforts are expected to streamline the
predictive process for AD, facilitate early detection, enable
personalized treatment strategies, and optimize resource
allocation. The ultimate goal is to provide valuable insights
to inform the development of improved, cost-effective
diagnostic and therapeutic approaches for addressing this
debilitating condition.

2, Existing work

Many researchers have conducted studies on classifying
AD using various datasets. In alignment with the present
study’s objectives, Rahman and Prasad® addressed the

challenge of accurately diagnosing AD—a disease that
severely impacts cognitive and behavioral abilities—as a
binary classification problem. Utilizing non-imaging data
from the AIBL, they built RF models employing different
combinations of data and preprocessing steps. An RF is
an ML algorithm that uses an ensemble of decision trees
to make predictions. It is a supervised learning method,
trained on labeled data to classify or predict outcomes. RFs
are known for their accuracy and ability to handle complex
datasets.

Their approach included using scaled and unscaled
data for simple RF classifiers, tuned RF classifiers, and
RF classifiers with selected features using DALEX and
Boruta packages in R software. Their results showed that
the tuned RF classifier, which utilized the original data,
achieved an impressive 96% accuracy in classifying AD
into HC and non-HC categories, with precision and recall
scores exceeding 97%. Model evaluation was primarily
focused on accuracy, in line with their research objective of
effectively classifying instances of AD. Furthermore, they
developed multiple diagnostic classifiers and evaluated
them to streamline the prediction process, aiming to create
a cost-effective diagnosis method.

Notably, their classifier based on neuropsychological
assessment  variables  demonstrated  exceptional
performance, achieving an accuracy of 93.68%. This model
required only 4 out of 30 test variables, highlighting its
potential to increase efficiency in diagnostic processes.

3. Dataset description

The AIBL study commenced in 2006 with the aim of
investigating the origins of AD and developing tools for
identifying cognitive decline at its early stages.*” The
study includes a diverse population comprising healthy
individuals, those with MCI, and those diagnosed with
AD. With over 1,000 participants, the AIBL dataset
represents a comprehensive resource for AD research.
It supports investigations into the associations between
lifestyle factors and cognitive impairment and facilitates
the development and evaluation of algorithms for early
AD detection. A summary of the dataset is presented in
Table 1.

4, Methodology

The Cross-Industry Process for Data Mining (CRISP-DM),
a widely adopted methodology recognized for its
effectiveness across industries, was employed in this study.
It offers flexibility while maintaining a comprehensive
and structured approach compared to other methods.’
The method comprises distinct phases: business
understanding, data understanding, data preparation,
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Table 1. Dataset summary

Variable Description
Demographics
Age 55-96 years old
Gender Categorized as “Female” or
“Male”
Medical history

Psychiatric (MH_PSYCH)

Neurologic (MH_NEURL)

Cardiovascular (MH_CARD)

Hepatic (MH_HEPAT)

Musculoskeletal (MH_MUSCL)

Endocrine-metabolic (MH_ENDO)

Gastrointestinal (MH_GAST)

Renal-genitourinary (MH_RENA)

Smoking (MH_SMOK)

Malignancy (MH_MALI)

Binary features

ApoE genotype

Two-allele genotype

Each individual carries two
ApoE alleles, and each allele
can be E2, E3, or E4

Neuropsychological assessments

Clinical dementia rating
(CDGLOBAL)

Total number of story units
recalled immediately; scores
ranged from 0 to 25

Mini-mental state exam
(MMSCORE)

Total number of story units
recalled after a delay; scores
ranged from 0 to 25

Logical memory immediate recall
(LIMMTOTAL)

Logical memory delayed recall
(LDELTOTAL)

Blood analysis

Thyroid stimulating hormone
(AXT117)

Vitamin B12 (BAT126)

Red blood cell count (HMT3)

White blood cell count (HMT7)

Platelet count (HMT13)

Hemoglobin (HMT40)

Mean corpuscular hemoglobin
(HMT100)

Mean corpuscular hemoglobin
concentration (HMT102)

Urea nitrogen (RCT6)

Serum glucose (RCT11)

Cholesterol (high performance;
RCT120)

Creatinine (rate blanked; RCT329)

Diagnosis

Diagnostic results

Categorized into healthy
control, mild cognitive
impairment, and Alzheimer’s
disease

Abbreviation: ApoE: Apolipoprotein E.

modeling, evaluation, and deployment. Figure 1 illustrates
a graphic representation of these CRISP-DM phases.

4.1. Business understanding

The business understanding phase involves defining
business objectives, assessing the current context,
establishing data mining goals, and formulating a project
plan. As outlined in the introduction, a background
study was conducted, and the research objectives were
clearly defined. The success criteria for this study involved
benchmarking classifier performance against the AD
classification model presented by Rahman and Prasad®
and comparing the best diagnosis classifier with the one
identified in their study.

This comparison focused on four key metrics critical for
evaluating classifier performance: (i) Accuracy, indicating
the proportion of correctly predicted instances relative to
the total number of instances in the dataset; (ii) precision, a
measure of prediction reliability, reflecting the ratio of true
positive predictions to all positive predictions; (iii) recall,
also referred to as sensitivity, measuring the classifier’s
ability to identify actual positive cases; and (iv) F1-score,
the harmonic mean of recall and precision, which balances
the trade-off between these two metrics.®

A comprehensive project plan was formulated
based on available resources, requirements, and risk
assessments. The plan encompassed tasks across each
CRISP-DM phase, including the selection of appropriate
tools, methodologies, and risk mitigation strategies. The
primary tools utilized were Google Colab and Python,
with tasks involving data preparation, cleaning, and
analysis. Python libraries, particularly functionalities

Business Data k.
understanding understanding \

“ preparation |

Modeling

X /
A y
A Evaluation y

Deployment

Figure 1. Phases of the cross-industry process for data mining
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from Scikit-learn,” were employed for modeling and
evaluation purposes.

4.2. Data understanding

In the second phase of the methodology, we began by
familiarizing ourselves with the collected data using a
comprehensive data dictionary, which outlined feature
descriptions and properties. The dataset comprised eight
distinct CSV files, imported into Google Colab via file
synchronization from Google Drive using the PyDrive
library in Python.'" Subsequently, these CSV files were
merged to construct a master dataframe, facilitated by
shared key columns such as RID, SITEID, and VISCODE,
resulting in a unified dataframe containing 1,688 rows and
36 columns.

Given our focus on baseline data, we filtered
the dataset for baseline entries using the VISCODE
column, yielding 862 observations. To prepare for pre-
analysis, we systematically transformed several features
into categorical formats based on predefined values.
Medical history variables—including MHPSYCH,
MH2NEURL, MH4CARD, MH6HEPAT, MH8MUSCL,
MHO9ENDO, MH10GAST, MHI2RENA, MH16SMOK,
and MH17MALI—were categorized as “No” or “Yes”
based on their respective binary values. Apolipoprotein E
(ApoE) genotypes (e.g., APGEN1, APGEN2) were labeled
as “E2) “E3) or “E4) corresponding to their genetic
variants. MMSCORE was segmented into severity levels
(e.g., “Severe,” “Moderate;” “Mild,” “Normal”) based on
predefined score ranges. PTGENDER was categorized as
“Male” or “Female” according to gender data. CDGLOBAL
was classified into health status categories (e.g., “Healthy,”
“Very Mild,” “Mild,” “Moderate,” “Severe”) based on
clinical assessment scores. DXCURREN was mapped to
clinical stages (e.g., “HC,” “MCI,” “AD”) using a predefined
mapping dictionary. These transformations enhance the
interpretability of the dataset by aligning feature values
with clinically relevant categories for subsequent analysis.
During this preparatory phase, it was observed that 2.28%
of the data were missing; however, no duplicates were
detected.

Before the exploratory data analysis, a few data cleaning
procedures were performed to enhance the interpretability
of the findings. This step was essential to ensure the
accuracy and reliability of the analyses by removing any
inconsistencies and inaccuracies within the dataset.
Initially, the age of patients was calculated by comparing
examination dates with their respective birthdates. This
process involved cleansing the date of birth column to
remove unnecessary characters, followed by the creation of
the EXAMYEAR column to compute the age as a distinct

»

feature. Furthermore, noisy values of “—4”—recurrent
across multiple columns—were identified and replaced
with NaN. Concurrently, redundant columns such as
RID, SITEID, VISCODE, EXAMDATE, EXAMYEAR,
APTESTDT, and PTDOB, among others, were eliminated
to streamline the dataset for analysis.

In the exploratory data analysis, the distribution of
output classes was visualized, revealing a significant class
imbalance among HC, MCI, and AD. Specifically, HC
emerged as the predominant class with 609 instances,
followed by MCI with 144 instances and AD with 105
instances. A subsequent review of summary statistics
for numerical features revealed slight discrepancies in
feature counts, suggesting the presence of missing values.
Moreover, notable differences in scales and variances were
observed across many features.

Upon delving further into the distributions of numerical
features, distinctive patterns were observed. Variables such
as AXT117, BAT126, and HMT7, alongside RCT6 and
RCT11, displayed a notable tendency toward higher values,
suggesting a right-skewed distribution. Similarly, RCT392
exhibited a comparable pattern, indicating a concentration
of data at the lower end with potential outliers extending
toward higher values.

In contrast, the distributions of HMT13, HMT40,
HMT100, HMT102, RCT20, RCT392, and AGE showed
a unimodal pattern, indicative of relatively normal
distributions with a pronounced peak at the center.
This characteristic suggests the presence of a central
value around which the data clusters. Furthermore,
LIMMTOTAL displayed a unimodal distribution with an
additional smaller peak, while LDELTOTAL exhibited a
similar pattern with a slightly less distinct secondary peak.

The analysis was extended using box plots to assess the
spread of numerical variables. Except for LIMMTOTAL,
LDELTOTAL, and AGE, potential outliers were observed
in the remaining variables at both ends of the distribution.

To assess multicollinearity,'' a correlation matrix was
constructed and visualized using a heatmap (Figure 2).
LIMMTOTAL and LDELTOTAL exhibited a strong
positive correlation, indicating a close relationship between
these variables. Additionally, HMT3 and HMT40, HMT100
and HMT102, as well as RCT6 and RCT392, demonstrated
strong  positive correlations, further highlighting
interdependencies within the dataset. Conversely, strong
negative correlations were observed between HMT100 and
HMT3, HMT40 and HMT3, as well as HMT13 and HMT3,
suggesting inverse relationships between these variables.

Finally, the association between categorical variables and
the target variables was evaluated. As shown in Figure 3,

Volume X Issue X (2025)

doi: 10.36922/DP025270031


https://dx.doi.org/10.36922/DP025270031

Design+

ML for predicting Alzheimer’s progression

CDGLOBAL and MMSCORE displayed significant Chi-
square statistics'? with extremely low p-values, indicating
a robust association with the target variable. This suggests
that these variables hold substantial predictive power with
respect to the target outcome. In addition, MH2NEURL,
APGEN1, and APGEN2 exhibited moderate chi-square
statistics accompanied by small p-values, indicating a
noticeable association with the target variable, although not
as strong as that of CDGLOBAL and MMSCORE. However,
MH8MUSCL and PTGENDER demonstrated relatively
smaller Chi-square statistics along with higher p-values,
suggesting a weaker association with the target variable.
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Figure 2. Correlation matrix heatmap of numerical features

Opverall, the exploratory data analysis identified several
areas for improvement, including class imbalance, missing
values, outliers, multicollinearity, and skewed distributions.

4.3. Data preparation

Data preparation, the third phase of the CRISP-DM
methodology, began by following the basic data cleaning
steps conducted during the data understanding phase.
The initial step involved converting categorical data into
a numerical format to facilitate model development.
However, it was noted that the “pd.factorize”® function
assigned “-1” in place of missing values, necessitating
further replacement with NaN values to enable imputation
at a later stage.

To prevent data leakage and assess the model’s efficacy
in generalizing to previously unseen data, a critical
first step was to split the data before implementing any
preprocessing techniques." The data was split in an 80:20
ratio, allocating 80% for training and the remaining 20%
for testing. Subsequently, we focused on handling missing
values within the training dataset, acknowledging the
potential impact on predictive accuracy due to data loss
if inadequately addressed. To address this, the MissForest
imputation technique,” an algorithmic approach that
initially uses mean and mode values to replace missing
data, was applied. This was followed by the implementation
of an RF methodology to iteratively predict missing values,
prioritizing data accuracy over processing speed.

Given the high dimensionality of the dataset, an analysis
of feature importance was conducted to determine the most

Association between Categorical Variables and Target Variable

PTGENDER
APGEN2 4
APGEN1 4

MH17MALI 4

MH16SMOK

MH12RENA 4

MH10GAST

MHSENDO -
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MHGHEPAT
MH4CARD 4
MH2NEURL -
MHPSYCH
MMSCORE 1
CDGLOBAL 1
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Figure 3. Visualization of the results from the Chi-square test
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influential features for accurate predictions. By combining
the permutation feature importance technique'® with an
RF classifier over 150 iterations, this analysis revealed the
significance of specific features in influencing predictive
accuracy, thereby guiding further modeling decisions. The
importance of each feature was systematically assessed to
ensure a comprehensive understanding of its contribution
to the overall predictive capability of the model.

Subsequently, feature selection was performed to
streamline computational resources and optimize model
performance. Using an RF feature selection technique'
with 100 estimators and a maximum depth of 5, the
algorithm evaluated each feature’s contribution to
impurity reduction (Gini impurity) before decision tree
construction, thereby identifying the most significant
features for predictive modeling. By selecting the most
informative, non-redundant features, data utilization was
optimized, resulting in improved computational efficiency
and enhanced model performance.

Addressing class imbalance, a common challenge in
ML, was essential to ensuring model robustness across all
classes. The Synthetic Minority Over-Sampling Technique
(SMOTE)" was applied to oversample minority classes
(e.g, MCI and AD) by generating synthetic samples,
yielding a balanced representation across all classes.
Following resampling, further adjustments were made to
facilitate model training and evaluation, resulting in the
creation of two distinct dataframes for analysis.

4.4. Modeling

In selecting ML models during the data preparation
phase, non-parametric models were prioritized due to
their flexibility in handling complex datasets.”” Outliers,
multicollinearity, and skewness were identified as key
challenges that were unaddressed in the previous phase.
Therefore, tree-based models were considered suitable
due to their adaptability to such issues. For multiclass
classification, the RF and XGBoost algorithms were
selected.”*?!

RF? is an ensemble learning algorithm that combines
multiple decision trees to yield more accurate and reliable
predictions. By training each decision tree on randomly
selected subsets of the training data, RF reduces overfitting
and enhances model generalizability.

XGBoost, commonly known as XGBoost,” is another
powerful algorithm in the gradient boosting family.
XGBoost is a widely used open-source software library that
implements a gradient boosting algorithm. It is commonly
applied to ML tasks such as classification, regression,
and ranking, particularly when dealing with tabular or
structured data. XGBoost is known for its speed, efficiency,

and ability to handle large datasets. It sequentially builds
a strong predictive model by aggregating the predictions
of multiple weak decision trees. Through advanced
feature selection and regularization techniques, XGBoost
minimizes overfitting and improves model performance.

Two models were developed for the prepared data:
baseline models and their fine-tuned equivalents. For
fine-tuning, the “RandomizedSearchCV” function was
used.” This method selects random combinations of
hyperparameter values from a grid, trains the model on a
subset of the training data, and evaluates its performance on
a different subset using cross-validation. The combination
that yields the best performance metric represents the
optimized set of hyperparameters for the model.

In addition, three distinct diagnosis classifiers were
developed to identify the most reliable method for reducing
the number of tests required for disease detection, thereby
lowering diagnostic costs. These classifiers utilize medical
history variables, blood analysis, ApoE genotype variables,
and neuropsychological assessment variables individually.
To model these classifiers, we employed the fine-tuned
version of the best-performing algorithm, ensuring
optimal predictive performance. This approach aims
to streamline the diagnostic process while maintaining
diagnostic accuracy.

4.5. Model evaluation

In this phase, a comprehensive evaluation of the models
was conducted to guide future actions. Predictions from
all models were compared against actual values using the
“classification_report” function.* The evaluation included
accuracy, as well as weighted-average precision, recall, and
Fl-score, offering a detailed overview of overall model
performance. This approach accounts for class imbalances,
ensuring robustness across all classes.” In addition,
macro-average and class-wise performance metrics were
emphasized when further insights were required. Given
the research focus of this study, the deployment phase was
omitted. A detailed analysis of the models is presented in
the Results and Discussion section.

5. Results
5.1. Feature importance

The Chi-square test results revealed a significant association
between the target variable and two key features,
CDGLOBAL and MMSCORE, as indicated by their strong
chi-square statistics and extremely low p-values. This
finding was further confirmed by the permutation feature
importance test. Figure 4 shows the feature importance
ranking, highlighting CDGLOBAL as the most influential
feature, followed by LDELTOTAL, MMSCORE, and
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Figure 4. Feature importance using permutation method

LIMMTOTAL. While MHOENDO ranked next in
importance, its contribution during the imputation
process was relatively less significant compared to the
other features. This comprehensive analysis underscores
the pivotal role of these features in predicting the target
outcome, thereby guiding subsequent steps in the analysis.

5.2. Feature selection

The RF-based feature selection process identified four
key features as crucial for predicting the output class,
DXCURREN: CDGLOBAL, MMSCORE, LIMMTOTAL,
and LDELTOTAL. These features demonstrated
significant importance in accurately predicting the target
outcome. Additionally, the feature importance analysis
revealed MH9ENDO as an additional feature, though its
contribution was relatively minor compared to the others.
Implementing this feature selection approach supported
decision-making by excluding MH9ENDO from the final
feature set.

5.3. Class balancing

In the dataset exhibiting class imbalance, the sample
distribution was skewed, with 609 samples for HC, 144 for
MCI, and 105 for AD. By generating additional synthetic
samples using SMOTE, each class was balanced to contain
490 samples.

5.4. Performance evaluation

As shown in Table 2, the performance evaluation metrics
indicate that the tuned RF model with selected features
outperformed the other models. The best hyperparameters
included “n_estimators” = 100, “min_samples_split” = 15,
“min_samples_leaf” = 1,and “max_depth” = 50—identified
through randomized search with five-fold cross-validation
over 100 iterations. Furthermore, the tuned RF model with
selected features demonstrated exceptional performance
across multiple evaluation metrics.

In Class 0 (HC), the model exhibited high precision
(97%) and recall (93%), ensuring accurate identification
of HCs. For Class 1 (MCI), while precision was moderate
(69%), the model displayed commendable recall (89%),
which is crucial for identifying MCI instances. Class 2
(AD) demonstrated balanced precision (95%) and recall
(78%), essential for accurately identifying AD cases.

The overall accuracy of 90% underscores the model’s
efficiency, with both macro-average (precision: 0.87;
recall: 0.87; F1-score: 0.86) and weighted-average metrics
(precision: 0.91; recall: 0.90; F1-score: 0.90) confirming its
consistency and superior performance across all classes.
This comprehensive evaluation highlights the effectiveness
of the tuned RF model in accurately distinguishing
between different diagnostic categories. The Appendix
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Table 2. Performance metrics of the machine learning models

Machine Complete features Selected features
learning model Accuracy Weighted average Accuracy Weighted average

Precision Recall  Fl-score Support Precision  Recall  Fl-score Support
Simple RF 0.88 0.90 0.88 0.88 74 0.86 0.86 0.86 0.86 134
Tuned RF 0.88 0.90 0.88 0.88 74 0.90° 0.91* 0.90* 0.90* 134*
Simple XGBoost 0.86 0.87 0.86 0.87 74 0.85 0.85 0.85 0.85 134
Tuned XGBoost 0.85 0.86 0.85 0.85 74 0.89 0.90 0.89 0.89 134

Notes: This table presents the performance of machine learning models evaluated on two datasets—one with complete features and one with selected
features. “Tuned” models refer to those that were optimized via hyperparameter tuning using “RandomizedSearchCV” function. Metrics include
accuracy, precision, recall, and F1-score. The “weighted average” accounts for class imbalance, while “support” indicates the number of test samples.
“Indicates the tuned RF model with selected features outperformed the other models.

Abbreviations: RF: Random forest; XGBoost: Extreme gradient boosting.

outlines the macro-average metrics and provides a detailed
classification report.

The evaluation of the diagnostic classifiers highlighted
the superior performance of the “neuropsychological
assessment” classifier compared to the other two. Leveraging
the wvariables CDGLOBAL (clinical dementia rating
[CDR]), MMSCORE (mini-mental state examination
[MMSE]), LIMMTOTAL (logical memory immediate
recall), and LDELTOTAL (logical memory delayed recall),
this classifier achieved a remarkable 90% accuracy in
classifying AD cases. These variables were modeled using
optimal hyperparameters—“n_estimators” = 100, “min_
samples_split” = 15, “min_samples_leaf” = 1, and “max_
depth” = 50—identified through randomized search with
five-fold cross-validation and 100 iterations. Performance
metrics of the diagnosis classifiers are presented in Table 3.

In terms of macro-average metrics, precision, recall,
and F1 scores were all approximately 0.86, indicating
consistent and balanced performance across all classes.
Furthermore, the weighted-average precision, recall, and
F1 scores exceeded 0.90, demonstrating excellent overall
performance, with precision slightly surpassing recall.
This detailed evaluation supports the effectiveness of the
“neuropsychological assessment” classifier in accurately
classifying AD cases. The Tables Al and A2 outline the
macro-average metrics and provide a detailed classification
report.

6. Discussion

This study focused on developing robust multi-class
classification models to predict AD across three distinct
groups—HC, individuals with MCI, and diagnosed AD
patients—and selecting the best-performing model based
on its evaluation metrics. The results obtained from the
optimal model could contribute to the early diagnosis
of disease progression and provide valuable insights for
advancing diagnostic methods and treatment strategies.

Table 3. Performance metrics of the diagnosis classifiers

Diagnostic Accuracy Weighted average

classifier Precision Recall F1- Support
score

Medical history 0.52 0.43 0.52 046 111

variables

Neuropsychological 0.90° 0.91 0.90  0.90 134

assessment variables

Blood analysis and 0.65 0.85 0.68  0.66 148

ApoE genotype

variables

Notes: This table presents the performance of three classifiers, each
constructed using a single feature group—medical history variables,
blood analysis and ApoE genotype data, and neuropsychological/
clinical test results. The “neuropsychological assessment” classifier is
further broken down into four individual cognitive tests: CDGLOBAL
(clinical dementia rating), MMSCORE (mini-mental state examination),
LIMMTOTAL (logical memory immediate recall), and LDELTOTAL
(logical memory delayed recall). All classifiers were developed using the
tuned Random Forest algorithm.

Abbreviation: ApoE: Apolipoprotein E.

Several data mining techniques used in this research,
particularly feature importance and feature selection,
yielded information that may inform further studies on
this debilitating condition.

The comparative analysis between RF and XGBoost
models, using the complete dataset, revealed detailed
differences in their performance metrics, offering valuable
insights into their predictive capabilities. Initially, both
the simple RF and tuned RF models demonstrated
a commendable overall accuracy of 88%, reflecting
their ability to generate accurate predictions. This
finding underscores the robustness of the RF algorithm
in identifying complex patterns within the dataset.
Furthermore, their high precision scores (90%) highlight
the model’s effectiveness in minimizing false positives—a
critical factor in healthcare applications and resource
optimization decision-making.
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Additionally, the notable recall scores (88%) confirm
the model’s ability to correctly identify relevant cases in
the dataset. The consistent F1-scores of 88% across both
RF models further validate their balance between precision
and recall, indicating their resilience to class imbalances
and capacity to maintain predictive integrity. In contrast,
the simple and tuned XGBoost models, while showing
competitive performance, exhibited slightly lower accuracy
scores of 86% and 85%, respectively. This indicates a slight
reduction in overall predictive capability compared to the
RF models. Nevertheless, the XGBoost models maintained
comparable precision and recall scores—approximately
87% and 86%, respectively—demonstrating a consistent
ability to minimize false positives and accurately detect
relevant cases. Despite this slight decrement in accuracy,
the Fl-scores of 87% (simple XGBoost) and 85% (tuned
XGBoost) indicate a well-maintained balance between
precision and recall, affirming their reliability to sustain
predictive accuracy across multiple evaluation metrics.

Both the simple RF and simple XGBoost models,
utilizing selected variables, exhibited comparable
accuracies of 86% and 85%, respectively, suggesting similar
predictive performance. However, upon tuning, the RF
model demonstrated a notable improvement, achieving
an impressive accuracy of 90% and outperforming the
tuned XGBoost model, which attained a respectable score
of 89%. This enhancement underscores the effectiveness
of fine-tuning in optimizing the RF algorithm’s predictive
capabilities, potentially making it a preferred choice in
scenarios where maximizing prediction accuracy is crucial.

Additionally, evaluating precision, recall, and F1-score
metrics provided a more comprehensive understanding
of model performance beyond overall accuracy. Both the
simple and tuned RF models consistently achieved higher
precision, recall, and F1 scores compared to their XGBoost
counterparts. Specifically, the tuned RF model yielded
the highest scores across all three metrics, indicating
superior ability to minimize false positives while effectively
capturing relevant instances from the dataset. While the
XGBoost models also demonstrated good precision, recall,
and F1 scores, they slightly underperformed relative
to the RF models, suggesting a moderate reduction in
their effectiveness at minimizing misclassifications and
accurately detecting relevant cases.

The predictive simple RF model from a previous
study achieved an impressive accuracy of 96.05% for a
binary classification task using all features of the AIBL
non-imaging dataset.* In comparison, our best model—
the tuned RF model using selected features—achieved
a slightly lower accuracy of 90%. When comparing
equivalent models from both studies, our simple RF model

using all features yielded an accuracy of 88%. However, it
is important to note that the prior study addressed a binary
classification problem, whereas our study considered all
three AD-related classes. This difference in classification
scope likely accounts for the observed decrease in accuracy.
The added complexity of distinguishing among three
classes inherently increases the challenge and may reduce
model performance relative to a binary setting.

Therefore, while our model’s accuracy may appear
slightly lower, its ability to classify across multiple
classes provides valuable insight into the severity of
AD. Furthermore, in our study, the train-test split was
performed prior to preprocessing, supporting the model’s
ability to generalize to unseen data. In contrast, the
previous study preprocessed the entire dataset, except for
SMOTE, which may have contributed to their enhanced
performance. Nonetheless, both studies consistently
identified CDGLOBAL (CDR), MMSCORE (MMSE
score), LIMMTOTAL (logical memory immediate recall),
and LDELTOTAL (logical memory delayed recall) as the
most informative predictors.

The comparison across classifiers based on medical
history, neuropsychological assessment, and blood analysis
with ApoE genotype variables offered valuable insights for
medical diagnostics and predictive modeling. Initially,
the classifier utilizing neuropsychological assessment
variables emerged as the top performer, displaying
impressive accuracy, precision, recall, and Fl-score
metrics, all exceeding 90%. This underscores the robust
predictive capability of neuropsychological assessment
data, highlighting its potential as a crucial diagnostic tool
for AD. However, the classifier relying on medical history
varjables exhibited substantially lower performance
metrics, with accuracy, precision, recall, and FI1 scores
hovering around 52%. This indicates its limited predictive
accuracy when used in isolation. Despite its relatively lower
accuracy, the classifier based on blood analysis and ApoE
genotype variables demonstrated notable improvement.
With precision at 85% and recall at 68%, resulting in an
F1-score of 66%, the classifier shows promise in enhancing
predictive accuracy and diagnostic capabilities by
incorporating blood analysis and genetic data.

Both the existing and the present study identified that
the classifier based on neuropsychological assessment
variables as the most effective, consistently demonstrating
exceptional performance metrics. Palmqvist*® underscored
the significance of the MMSE score in predicting the
transition from MCI to AD. Similarly, Bloch and Friedrich”
concluded that cognitive test results, including MMSE
and CDR values, were the most informative features for
effectively classifying AD. These findings highlight the
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critical role of cognitive assessments in the early detection
and diagnosis of AD.

7. Conclusion and future work

In this study, non-imaging data from the AIBL were
analyzed to classify AD into three classes: HC, individuals
with MCI, and those diagnosed with AD. Extensive
data cleaning and exploration were conducted to reveal
underlying patterns and extract information using various
data mining techniques and statistical methods, including
correlation analysis, feature association analysis, feature
importance analysis, and feature selection.

To address the challenge of class imbalance, synthetic
oversampling methods were employed to generate artificial
samples to balance the target classes. Subsequently, the data
were modeled and evaluated using advanced non-parametric
ML algorithms, such as RF and XGBoost, first with complete
feature set and then with selected features obtained through
the feature selection process. Fine-tuning techniques were
applied to enhance predictive accuracy. The results from
these models underwent thorough evaluation to determine
the most effective algorithm. The tuned RF model emerged
as the top performer, achieving an accuracy of 90%, with
precision, recall, and F1 scores also reaching 90%.

Furthermore, to reduce the diagnosis cost of AD and
provide valuable insights toward developing a more
reliable and affordable diagnostic tool, the data were
segmented into three main variable groups: medical
history, neuropsychological assessment, and blood analysis
with ApoE genotype variables. Corresponding ML models
were then developed using the fine-tuned model of the
best-performing algorithm. The “neuropsychological
assessment” classifier emerged as the most effective,
exhibiting an exceptional accuracy of 90%.

Beyond its strong classification performance, this study
presents a replicable and cost-effective methodology that
may benefit other research groups, clinical practitioners,
and public health systems aiming to improve early detection
of AD. By leveraging non-imaging data—including widely
available neuropsychological assessments—our approach
avoids the high costs and limited accessibility associated
with imaging-based diagnostics. The use of interpretable
ML models, combined with robust feature selection and
data preprocessing techniques, facilitates deployment in
diverse clinical or research settings without the need for
extensive computational infrastructure. Moreover, the
proposed methodology can be adapted to other populations
or datasets, supporting generalizability studies and cross-
cohort validation efforts. This makes it particularly relevant
for low-resource settings or large-scale screening efforts
where rapid, accurate, and affordable tools are essential.

Ultimately, this framework serves as a foundation for
developing intelligent, personalized diagnostic support
systems that prioritize early intervention and optimized
resource allocation.

Given the time constraints of this research, explicit
handling of outliers, multicollinearity, or distribution
abnormalities was not performed. However, the selected
models possess built-in capabilities to address these
issues. Involving domain experts to directly address
these factors could further enhance model performance.
Moreover, the models were fine-tuned using the
“RandomizedSearchCV” function; however, a more
exhaustive approach, such as “GridSearchCV;*® could
potentially yield better parameters by exploring a wider
range of combinations. Although this study focused solely
on direct multi-class classification, alternative approaches
such as one-versus-one and one-versus-the-rest? may
offer additional insights. Acknowledging these limitations
provides a pathway for future research and further
exploration of the problem.
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Appendices

Table Al. Classification performance of machine learning models using complete and selected features

Dataset Classification report
type
Complete Simple RF Tuned RF
features Precision ~ Recall ~ Fl-score  Support Precision =~ Recall ~ Fl-score  Support
HC 0.95 0.93 0.94 40 HC 0.95 0.93 0.94 40
MCI 0.70 0.89 0.78 18 MCI 0.70 0.89 0.78 18
AD 1.00 0.75 0.86 16 AD 1.00 0.75 0.86 16
Macro-average 0.88 0.85 0.86 74 Macro-average 0.88 0.85 0.86 74
Confusion matrix Confusion matrix
37 3 0 37 3 0
2 16 0 2 16 0
0 4 12 0 4 12
Simple XGBoost Tuned XGBoost
Precision ~ Recall ~ Fl-score  Support Precision ~ Recall ~ Fl-score  Support
HC 0.93 0.93 0.93 40 HC 0.90 0.93 0.91 40
MCI 0.71 0.83 0.77 18 MCI 0.70 0.78 0.74 18
AD 0.92 0.75 0.83 16 AD 0.92 0.75 0.83 16
Macro-average 0.85 0.84 0.84 74 Macro-average 0.84 0.82 0.83 74
Confusion matrix Confusion matrix
37 3 0 37 3 0
2 15 1 3 14 1
1 3 12 1 3 12
Selected Simple RF Tuned RF
features Precision ~ Recall ~ Fl-score  Support Precision  Recall ~ Fl-score  Support
HC 0.93 0.94 0.93 84 HC 0.97 0.93 0.95 84
MCI 0.63 0.70 0.67 27 MCI 0.69 0.89 0.77 27
AD 0.89 0.74 0.81 23 AD 0.95 0.78 0.86 23
Macro-average 0.82 0.79 0.80 134 Macro-average 0.87 0.87 0.86 134
Confusion matrix Confusion matrix
79 5 0 78 6 0
6 19 2 2 24 1
0 6 17 0 5 18
Simple XGBoost Tuned XGBoost
Precision ~ Recall ~ Fl-score  Support Precision ~ Recall ~ Fl-score  Support
HC 0.91 0.95 0.93 84 HC 0.97 0.93 0.95 84
MCI 0.63 0.63 0.63 27 MCI 0.68 0.85 0.75 27
AD 0.89 0.74 0.81 23 AD 0.90 0.78 0.84 23
Macro-average 0.81 0.77 0.79 134 Macro-average 0.85 0.85 0.85 134
Confusion matrix Confusion matrix
80 4 0 78 6 0
8 17 2 2 23 2
0 6 17 0 5 18

Abbreviations: AD: Alzheimer’s disease; HC: Healthy control; MCI: Mild cognitive impairment; RF: Random forest.
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Table A2. Classification report of diagnosis classifiers

Diagnosis classifier Classification report

Medical history Precision Recall F1-score Support

variables HC 060 080 068 69
MCI 0.09 0.04 0.06 24
AD 0.25 0.11 0.15 18

Macro-average  0.31 032 030 111
Confusion matrix

55 10 4

21 1 2
16 0 2
Neuropsychological Precision Recall F1-score Support
assessment variables HC 097 093 095 84
MCI 0.69 089  0.77 27
AD 0.95 0.78 0.86 23

Macro-average 0.87  0.87  0.86 134

Confusion matrix

78 6 0
2 24 1
0 5 18
Blood analysis and Precision Recall F1-score Support
ApoE genotype HC 078 085 081 107
variables
MCI 0.19 0.14 0.16 22
AD 0.47 0.37 0.41 19

Macro-average 0.48 045 0.46 148

Confusion matrix

91 11 5
16 3 3
10 2 7

Abbreviations: AD: Alzheimer’s disease; ApoE: Apolipoprotein
E; HC: Healthy control; MCI: Mild cognitive impairment.
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