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Abstract
Alzheimer’s disease (AD) represents a significant global health challenge, affecting 
millions of individuals worldwide through progressive cognitive decline and behavioral 
changes. The burden extends beyond patients to caregivers and healthcare systems. 
While traditional diagnostic methods pose financial obstacles, emerging non-imaging 
techniques show promise. Machine learning has emerged as a transformative approach 
for enhancing both diagnosis and management. This study aims to develop a robust 
multi-class classification model using random forest (RF) and extreme gradient boosting 
algorithms on non-imaging data from the Australian AD Neuroimaging Initiative, 
with emphasis on the Australian Imaging, Biomarkers, and Lifestyle Study of Aging. 
Extensive data analysis was conducted, including feature importance and selection, 
to improve interpretability and classification accuracy. Synthetic oversampling was 
applied to address class imbalance. The findings indicate the superiority of the tuned 
RF model, achieving 90% in accuracy, precision, recall, and F1 scores. In addition, 
cost-effective diagnostic variables were explored, with neuropsychology assessment 
variables demonstrating exceptional accuracy (90%). This research contributes to early 
AD detection, personalized treatment, and optimized resource allocation.

Keywords: Alzheimer’s disease; Machine learning; Python classification model; 
Non-imaging data; Random Forest; Extreme gradient boosting; Australian imaging 
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1. Introduction
Alzheimer’s disease (AD) represents a significant global health challenge, affecting 
millions of individuals worldwide. This condition progressively impairs memory, 
cognitive function, and behavior, ultimately leading to severe disability and death. AD 
not only affects those diagnosed but also places considerable strain on caregivers and 
healthcare systems, escalating the burden of care and resource allocation. Initially, AD 
may manifest as mild forgetfulness, but it gradually progresses to encompass a wide 
range of symptoms that deteriorate over time, subjecting both patients and their families 
to a distressing trajectory of decline and loss. The emotional toll of AD extends beyond 
cognitive impairment, significantly affecting the well-being of families and caregivers.1 
The continuous demands of caregiving challenge emotional resilience and endurance. 
However, amidst these challenges, there is a shared commitment to confronting AD with 
resolve and innovation.
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One significant obstacle in addressing AD is the high 
cost associated with traditional imaging techniques and 
diagnostic procedures. While these methods are beneficial, 
they are often highly expensive for patients and healthcare 
systems. Nevertheless, emerging alternatives, such as 
genetic markers, neuropsychological assessments, and 
biomarker analysis, show promise as more accessible 
and cost-effective diagnostic tools.2 By prioritizing these 
non-imaging methods, the financial burden of diagnosis 
may be alleviated, thereby broadening access to care for 
individuals with AD.

In this landscape of challenges and opportunities, 
machine learning (ML) has emerged as a transformative 
tool. With its ability to process complex datasets and extract 
valuable insights, ML holds the potential to improve AD 
diagnosis and management. Through the utilization of 
novel data and rigorous training, ML algorithms excel at 
predicting outcomes and providing invaluable guidance for 
decision-making processes. Moreover, ML enables earlier 
disease detection and intervention, thereby contributing 
to improved patient outcomes and enhanced quality of 
life.3 The adaptability of ML models further allows for 
continual refinement and optimization, ensuring ongoing 
improvements in prediction accuracy and diagnostic 
efficacy.

The primary objective of this study is to develop a 
robust multi-class classification model for predicting 
AD among three distinct groups: Healthy control (HC), 
individuals with mild cognitive impairment (MCI), and 
those diagnosed with AD. Leveraging non-imaging data 
from the Australian AD Neuroimaging Initiative,4 with a 
particular emphasis on the Australian Imaging Biomarkers 
and Lifestyle Study of Aging (AIBL),5 this study utilizes 
random forest (RF) and Extreme Gradient Boosting 
(XGBoost) algorithms, along with their optimized 
models. Through comparative analysis, the most 
effective classification model is identified. In addition, 
this study aims to enhance interpretability through 
feature importance analysis and the evaluation of various 
classifiers. These efforts are expected to streamline the 
predictive process for AD, facilitate early detection, enable 
personalized treatment strategies, and optimize resource 
allocation. The ultimate goal is to provide valuable insights 
to inform the development of improved, cost-effective 
diagnostic and therapeutic approaches for addressing this 
debilitating condition.

2. Existing work
Many researchers have conducted studies on classifying 
AD using various datasets. In alignment with the present 
study’s objectives, Rahman and Prasad6 addressed the 

challenge of accurately diagnosing AD—a disease that 
severely impacts cognitive and behavioral abilities—as a 
binary classification problem. Utilizing non-imaging data 
from the AIBL, they built RF models employing different 
combinations of data and preprocessing steps. An RF is 
an ML algorithm that uses an ensemble of decision trees 
to make predictions. It is a supervised learning method, 
trained on labeled data to classify or predict outcomes. RFs 
are known for their accuracy and ability to handle complex 
datasets.

Their approach included using scaled and unscaled 
data for simple RF classifiers, tuned RF classifiers, and 
RF classifiers with selected features using DALEX and 
Boruta packages in R software. Their results showed that 
the tuned RF classifier, which utilized the original data, 
achieved an impressive 96% accuracy in classifying AD 
into HC and non-HC categories, with precision and recall 
scores exceeding 97%. Model evaluation was primarily 
focused on accuracy, in line with their research objective of 
effectively classifying instances of AD. Furthermore, they 
developed multiple diagnostic classifiers and evaluated 
them to streamline the prediction process, aiming to create 
a cost-effective diagnosis method.

Notably, their classifier based on neuropsychological 
assessment variables demonstrated exceptional 
performance, achieving an accuracy of 93.68%. This model 
required only 4 out of 30 test variables, highlighting its 
potential to increase efficiency in diagnostic processes.

3. Dataset description
The AIBL study commenced in 2006 with the aim of 
investigating the origins of AD and developing tools for 
identifying cognitive decline at its early stages.4,5 The 
study includes a diverse population comprising healthy 
individuals, those with MCI, and those diagnosed with 
AD. With over 1,000 participants, the AIBL dataset 
represents a comprehensive resource for AD research. 
It supports investigations into the associations between 
lifestyle factors and cognitive impairment and facilitates 
the development and evaluation of algorithms for early 
AD detection. A  summary of the dataset is presented in 
Table 1.

4. Methodology
The Cross-Industry Process for Data Mining (CRISP-DM), 
a widely adopted methodology recognized for its 
effectiveness across industries, was employed in this study. 
It offers flexibility while maintaining a comprehensive 
and structured approach compared to other methods.7 
The method comprises distinct phases: business 
understanding, data understanding, data preparation, 
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modeling, evaluation, and deployment. Figure 1 illustrates 
a graphic representation of these CRISP-DM phases.

4.1. Business understanding

The business understanding phase involves defining 
business objectives, assessing the current context, 
establishing data mining goals, and formulating a project 
plan. As outlined in the introduction, a background 
study was conducted, and the research objectives were 
clearly defined. The success criteria for this study involved 
benchmarking classifier performance against the AD 
classification model presented by Rahman and Prasad6 
and comparing the best diagnosis classifier with the one 
identified in their study.

This comparison focused on four key metrics critical for 
evaluating classifier performance: (i) Accuracy, indicating 
the proportion of correctly predicted instances relative to 
the total number of instances in the dataset; (ii) precision, a 
measure of prediction reliability, reflecting the ratio of true 
positive predictions to all positive predictions; (iii) recall, 
also referred to as sensitivity, measuring the classifier’s 
ability to identify actual positive cases; and (iv) F1-score, 
the harmonic mean of recall and precision, which balances 
the trade-off between these two metrics.8

A comprehensive project plan was formulated 
based on available resources, requirements, and risk 
assessments. The plan encompassed tasks across each 
CRISP-DM phase, including the selection of appropriate 
tools, methodologies, and risk mitigation strategies. The 
primary tools utilized were Google Colab and Python, 
with tasks involving data preparation, cleaning, and 
analysis. Python libraries, particularly functionalities 

Figure 1. Phases of the cross-industry process for data mining

Table 1. Dataset summary

Variable Description
Demographics

Age 55–96 years old
Gender Categorized as “Female” or 

“Male”
Medical history

Psychiatric (MH_PSYCH) Binary features
Neurologic (MH_NEURL)
Cardiovascular (MH_CARD)
Hepatic (MH_HEPAT)
Musculoskeletal (MH_MUSCL)
Endocrine–metabolic (MH_ENDO)
Gastrointestinal (MH_GAST)
Renal–genitourinary (MH_RENA)
Smoking (MH_SMOK)
Malignancy (MH_MALI)

ApoE genotype
Two‑allele genotype Each individual carries two 

ApoE alleles, and each allele 
can be E2, E3, or E4

Neuropsychological assessments
Clinical dementia rating 
(CDGLOBAL)

Total number of story units 
recalled immediately; scores 
ranged from 0 to 25

Mini‑mental state exam 
(MMSCORE)

Total number of story units 
recalled after a delay; scores 
ranged from 0 to 25

Logical memory immediate recall 
(LIMMTOTAL)

‑

Logical memory delayed recall 
(LDELTOTAL)

Blood analysis
Thyroid stimulating hormone 
(AXT117)
Vitamin B12 (BAT126)
Red blood cell count (HMT3)
White blood cell count (HMT7)
Platelet count (HMT13)
Hemoglobin (HMT40)
Mean corpuscular hemoglobin 
(HMT100)
Mean corpuscular hemoglobin 
concentration (HMT102)
Urea nitrogen (RCT6)
Serum glucose (RCT11)
Cholesterol (high performance; 
RCT120)
Creatinine (rate blanked; RCT329)

Diagnosis
Diagnostic results Categorized into healthy 

control, mild cognitive 
impairment, and Alzheimer’s 
disease

Abbreviation: ApoE: Apolipoprotein E.
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from Scikit-learn,9 were employed for modeling and 
evaluation purposes.

4.2. Data understanding

In the second phase of the methodology, we began by 
familiarizing ourselves with the collected data using a 
comprehensive data dictionary, which outlined feature 
descriptions and properties. The dataset comprised eight 
distinct CSV files, imported into Google Colab via file 
synchronization from Google Drive using the PyDrive 
library in Python.10 Subsequently, these CSV files were 
merged to construct a master dataframe, facilitated by 
shared key columns such as RID, SITEID, and VISCODE, 
resulting in a unified dataframe containing 1,688 rows and 
36 columns.

Given our focus on baseline data, we filtered 
the dataset for baseline entries using the VISCODE 
column, yielding 862 observations. To prepare for pre-
analysis, we systematically transformed several features 
into categorical formats based on predefined values. 
Medical history variables—including MHPSYCH, 
MH2NEURL, MH4CARD, MH6HEPAT, MH8MUSCL, 
MH9ENDO, MH10GAST, MH12RENA, MH16SMOK, 
and MH17MALI—were categorized as “No” or “Yes” 
based on their respective binary values. Apolipoprotein E 
(ApoE) genotypes (e.g., APGEN1, APGEN2) were labeled 
as “E2,” “E3,” or “E4,” corresponding to their genetic 
variants. MMSCORE was segmented into severity levels 
(e.g., “Severe,” “Moderate,” “Mild,” “Normal”) based on 
predefined score ranges. PTGENDER was categorized as 
“Male” or “Female” according to gender data. CDGLOBAL 
was classified into health status categories (e.g., “Healthy,” 
“Very Mild,” “Mild,” “Moderate,” “Severe”) based on 
clinical assessment scores. DXCURREN was mapped to 
clinical stages (e.g., “HC,” “MCI,” “AD”) using a predefined 
mapping dictionary. These transformations enhance the 
interpretability of the dataset by aligning feature values 
with clinically relevant categories for subsequent analysis. 
During this preparatory phase, it was observed that 2.28% 
of the data were missing; however, no duplicates were 
detected.

Before the exploratory data analysis, a few data cleaning 
procedures were performed to enhance the interpretability 
of the findings. This step was essential to ensure the 
accuracy and reliability of the analyses by removing any 
inconsistencies and inaccuracies within the dataset. 
Initially, the age of patients was calculated by comparing 
examination dates with their respective birthdates. This 
process involved cleansing the date of birth column to 
remove unnecessary characters, followed by the creation of 
the EXAMYEAR column to compute the age as a distinct 

feature. Furthermore, noisy values of “−4”—recurrent 
across multiple columns—were identified and replaced 
with NaN. Concurrently, redundant columns such as 
RID, SITEID, VISCODE, EXAMDATE, EXAMYEAR, 
APTESTDT, and PTDOB, among others, were eliminated 
to streamline the dataset for analysis.

In the exploratory data analysis, the distribution of 
output classes was visualized, revealing a significant class 
imbalance among HC, MCI, and AD. Specifically, HC 
emerged as the predominant class with 609 instances, 
followed by MCI with 144 instances and AD with 105 
instances. A  subsequent review of summary statistics 
for numerical features revealed slight discrepancies in 
feature counts, suggesting the presence of missing values. 
Moreover, notable differences in scales and variances were 
observed across many features.

Upon delving further into the distributions of numerical 
features, distinctive patterns were observed. Variables such 
as AXT117, BAT126, and HMT7, alongside RCT6 and 
RCT11, displayed a notable tendency toward higher values, 
suggesting a right-skewed distribution. Similarly, RCT392 
exhibited a comparable pattern, indicating a concentration 
of data at the lower end with potential outliers extending 
toward higher values.

In contrast, the distributions of HMT13, HMT40, 
HMT100, HMT102, RCT20, RCT392, and AGE showed 
a unimodal pattern, indicative of relatively normal 
distributions with a pronounced peak at the center. 
This characteristic suggests the presence of a central 
value around which the data clusters. Furthermore, 
LIMMTOTAL displayed a unimodal distribution with an 
additional smaller peak, while LDELTOTAL exhibited a 
similar pattern with a slightly less distinct secondary peak.

The analysis was extended using box plots to assess the 
spread of numerical variables. Except for LIMMTOTAL, 
LDELTOTAL, and AGE, potential outliers were observed 
in the remaining variables at both ends of the distribution.

To assess multicollinearity,11 a correlation matrix was 
constructed and visualized using a heatmap (Figure  2). 
LIMMTOTAL and LDELTOTAL exhibited a strong 
positive correlation, indicating a close relationship between 
these variables. Additionally, HMT3 and HMT40, HMT100 
and HMT102, as well as RCT6 and RCT392, demonstrated 
strong positive correlations, further highlighting 
interdependencies within the dataset. Conversely, strong 
negative correlations were observed between HMT100 and 
HMT3, HMT40 and HMT3, as well as HMT13 and HMT3, 
suggesting inverse relationships between these variables.

Finally, the association between categorical variables and 
the target variables was evaluated. As shown in Figure  3, 
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CDGLOBAL and MMSCORE displayed significant Chi-
square statistics12 with extremely low p-values, indicating 
a robust association with the target variable. This suggests 
that these variables hold substantial predictive power with 
respect to the target outcome. In addition, MH2NEURL, 
APGEN1, and APGEN2 exhibited moderate chi-square 
statistics accompanied by small p-values, indicating a 
noticeable association with the target variable, although not 
as strong as that of CDGLOBAL and MMSCORE. However, 
MH8MUSCL and PTGENDER demonstrated relatively 
smaller Chi-square statistics along with higher p-values, 
suggesting a weaker association with the target variable.

Overall, the exploratory data analysis identified several 
areas for improvement, including class imbalance, missing 
values, outliers, multicollinearity, and skewed distributions.

4.3. Data preparation

Data preparation, the third phase of the CRISP-DM 
methodology, began by following the basic data cleaning 
steps conducted during the data understanding phase. 
The initial step involved converting categorical data into 
a numerical format to facilitate model development. 
However, it was noted that the “pd.factorize”13 function 
assigned “−1” in place of missing values, necessitating 
further replacement with NaN values to enable imputation 
at a later stage.

To prevent data leakage and assess the model’s efficacy 
in generalizing to previously unseen data, a critical 
first step was to split the data before implementing any 
preprocessing techniques.14 The data was split in an 80:20 
ratio, allocating 80% for training and the remaining 20% 
for testing. Subsequently, we focused on handling missing 
values within the training dataset, acknowledging the 
potential impact on predictive accuracy due to data loss 
if inadequately addressed. To address this, the MissForest 
imputation technique,15 an algorithmic approach that 
initially uses mean and mode values to replace missing 
data, was applied. This was followed by the implementation 
of an RF methodology to iteratively predict missing values, 
prioritizing data accuracy over processing speed.

Given the high dimensionality of the dataset, an analysis 
of feature importance was conducted to determine the most Figure 2. Correlation matrix heatmap of numerical features

Figure 3. Visualization of the results from the Chi-square test
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influential features for accurate predictions. By combining 
the permutation feature importance technique16 with an 
RF classifier over 150 iterations, this analysis revealed the 
significance of specific features in influencing predictive 
accuracy, thereby guiding further modeling decisions. The 
importance of each feature was systematically assessed to 
ensure a comprehensive understanding of its contribution 
to the overall predictive capability of the model.

Subsequently, feature selection was performed to 
streamline computational resources and optimize model 
performance. Using an RF feature selection technique17 
with 100 estimators and a maximum depth of 5, the 
algorithm evaluated each feature’s contribution to 
impurity reduction (Gini impurity) before decision tree 
construction, thereby identifying the most significant 
features for predictive modeling. By selecting the most 
informative, non-redundant features, data utilization was 
optimized, resulting in improved computational efficiency 
and enhanced model performance.

Addressing class imbalance, a common challenge in 
ML, was essential to ensuring model robustness across all 
classes. The Synthetic Minority Over-Sampling Technique 
(SMOTE)18 was applied to oversample minority classes 
(e.g., MCI and AD) by generating synthetic samples, 
yielding a balanced representation across all classes. 
Following resampling, further adjustments were made to 
facilitate model training and evaluation, resulting in the 
creation of two distinct dataframes for analysis.

4.4. Modeling

In selecting ML models during the data preparation 
phase, non-parametric models were prioritized due to 
their flexibility in handling complex datasets.19 Outliers, 
multicollinearity, and skewness were identified as key 
challenges that were unaddressed in the previous phase. 
Therefore, tree-based models were considered suitable 
due to their adaptability to such issues. For multiclass 
classification, the RF and XGBoost algorithms were 
selected.20,21

RF21 is an ensemble learning algorithm that combines 
multiple decision trees to yield more accurate and reliable 
predictions. By training each decision tree on randomly 
selected subsets of the training data, RF reduces overfitting 
and enhances model generalizability.

XGBoost, commonly known as XGBoost,22 is another 
powerful algorithm in the gradient boosting family. 
XGBoost is a widely used open-source software library that 
implements a gradient boosting algorithm. It is commonly 
applied to ML tasks such as classification, regression, 
and ranking, particularly when dealing with tabular or 
structured data. XGBoost is known for its speed, efficiency, 

and ability to handle large datasets. It sequentially builds 
a strong predictive model by aggregating the predictions 
of multiple weak decision trees. Through advanced 
feature selection and regularization techniques, XGBoost 
minimizes overfitting and improves model performance.

Two models were developed for the prepared data: 
baseline models and their fine-tuned equivalents. For 
fine-tuning, the “RandomizedSearchCV” function was 
used.23 This method selects random combinations of 
hyperparameter values from a grid, trains the model on a 
subset of the training data, and evaluates its performance on 
a different subset using cross-validation. The combination 
that yields the best performance metric represents the 
optimized set of hyperparameters for the model.

In addition, three distinct diagnosis classifiers were 
developed to identify the most reliable method for reducing 
the number of tests required for disease detection, thereby 
lowering diagnostic costs. These classifiers utilize medical 
history variables, blood analysis, ApoE genotype variables, 
and neuropsychological assessment variables individually. 
To model these classifiers, we employed the fine-tuned 
version of the best-performing algorithm, ensuring 
optimal predictive performance. This approach aims 
to streamline the diagnostic process while maintaining 
diagnostic accuracy.

4.5. Model evaluation

In this phase, a comprehensive evaluation of the models 
was conducted to guide future actions. Predictions from 
all models were compared against actual values using the 
“classification_report” function.24 The evaluation included 
accuracy, as well as weighted-average precision, recall, and 
F1-score, offering a detailed overview of overall model 
performance. This approach accounts for class imbalances, 
ensuring robustness across all classes.25 In addition, 
macro-average and class-wise performance metrics were 
emphasized when further insights were required. Given 
the research focus of this study, the deployment phase was 
omitted. A detailed analysis of the models is presented in 
the Results and Discussion section.

5. Results
5.1. Feature importance

The Chi-square test results revealed a significant association 
between the target variable and two key features, 
CDGLOBAL and MMSCORE, as indicated by their strong 
chi-square statistics and extremely low p-values. This 
finding was further confirmed by the permutation feature 
importance test. Figure  4 shows the feature importance 
ranking, highlighting CDGLOBAL as the most influential 
feature, followed by LDELTOTAL, MMSCORE, and 
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LIMMTOTAL. While MH9ENDO ranked next in 
importance, its contribution during the imputation 
process was relatively less significant compared to the 
other features. This comprehensive analysis underscores 
the pivotal role of these features in predicting the target 
outcome, thereby guiding subsequent steps in the analysis.

5.2. Feature selection

The RF-based feature selection process identified four 
key features as crucial for predicting the output class, 
DXCURREN: CDGLOBAL, MMSCORE, LIMMTOTAL, 
and LDELTOTAL. These features demonstrated 
significant importance in accurately predicting the target 
outcome. Additionally, the feature importance analysis 
revealed MH9ENDO as an additional feature, though its 
contribution was relatively minor compared to the others. 
Implementing this feature selection approach supported 
decision-making by excluding MH9ENDO from the final 
feature set.

5.3. Class balancing

In the dataset exhibiting class imbalance, the sample 
distribution was skewed, with 609 samples for HC, 144 for 
MCI, and 105 for AD. By generating additional synthetic 
samples using SMOTE, each class was balanced to contain 
490 samples.

5.4. Performance evaluation

As shown in Table 2, the performance evaluation metrics 
indicate that the tuned RF model with selected features 
outperformed the other models. The best hyperparameters 
included “n_estimators” = 100, “min_samples_split” = 15, 
“min_samples_leaf ” = 1, and “max_depth” = 50—identified 
through randomized search with five-fold cross-validation 
over 100 iterations. Furthermore, the tuned RF model with 
selected features demonstrated exceptional performance 
across multiple evaluation metrics.

In Class  0 (HC), the model exhibited high precision 
(97%) and recall (93%), ensuring accurate identification 
of HCs. For Class 1 (MCI), while precision was moderate 
(69%), the model displayed commendable recall (89%), 
which is crucial for identifying MCI instances. Class  2 
(AD) demonstrated balanced precision (95%) and recall 
(78%), essential for accurately identifying AD cases.

The overall accuracy of 90% underscores the model’s 
efficiency, with both macro-average (precision: 0.87; 
recall: 0.87; F1-score: 0.86) and weighted-average metrics 
(precision: 0.91; recall: 0.90; F1-score: 0.90) confirming its 
consistency and superior performance across all classes. 
This comprehensive evaluation highlights the effectiveness 
of the tuned RF model in accurately distinguishing 
between different diagnostic categories. The Appendix 

Figure 4. Feature importance using permutation method
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outlines the macro-average metrics and provides a detailed 
classification report.

The evaluation of the diagnostic classifiers highlighted 
the superior performance of the “neuropsychological 
assessment” classifier compared to the other two. Leveraging 
the variables CDGLOBAL (clinical dementia rating 
[CDR]), MMSCORE (mini-mental state examination 
[MMSE]), LIMMTOTAL (logical memory immediate 
recall), and LDELTOTAL (logical memory delayed recall), 
this classifier achieved a remarkable 90% accuracy in 
classifying AD cases. These variables were modeled using 
optimal hyperparameters—“n_estimators”  = 100, “min_
samples_split” = 15, “min_samples_leaf ” = 1, and “max_
depth” = 50—identified through randomized search with 
five-fold cross-validation and 100 iterations. Performance 
metrics of the diagnosis classifiers are presented in Table 3.

In terms of macro-average metrics, precision, recall, 
and F1 scores were all approximately 0.86, indicating 
consistent and balanced performance across all classes. 
Furthermore, the weighted-average precision, recall, and 
F1 scores exceeded 0.90, demonstrating excellent overall 
performance, with precision slightly surpassing recall. 
This detailed evaluation supports the effectiveness of the 
“neuropsychological assessment” classifier in accurately 
classifying AD cases. The Tables A1 and A2 outline the 
macro-average metrics and provide a detailed classification 
report.

6. Discussion
This study focused on developing robust multi-class 
classification models to predict AD across three distinct 
groups—HC, individuals with MCI, and diagnosed AD 
patients—and selecting the best-performing model based 
on its evaluation metrics. The results obtained from the 
optimal model could contribute to the early diagnosis 
of disease progression and provide valuable insights for 
advancing diagnostic methods and treatment strategies. 

Several data mining techniques used in this research, 
particularly feature importance and feature selection, 
yielded information that may inform further studies on 
this debilitating condition.

The comparative analysis between RF and XGBoost 
models, using the complete dataset, revealed detailed 
differences in their performance metrics, offering valuable 
insights into their predictive capabilities. Initially, both 
the simple RF and tuned RF models demonstrated 
a commendable overall accuracy of 88%, reflecting 
their ability to generate accurate predictions. This 
finding underscores the robustness of the RF algorithm 
in identifying complex patterns within the dataset. 
Furthermore, their high precision scores (90%) highlight 
the model’s effectiveness in minimizing false positives—a 
critical factor in healthcare applications and resource 
optimization decision-making.

Table 2. Performance metrics of the machine learning models

Machine 
learning model

Complete features Selected features

Accuracy Weighted average Accuracy Weighted average

Precision Recall F1‑score Support Precision Recall F1‑score Support

Simple RF 0.88 0.90 0.88 0.88 74 0.86 0.86 0.86 0.86 134

Tuned RF 0.88 0.90 0.88 0.88 74 0.90a 0.91a 0.90a 0.90a 134a

Simple XGBoost 0.86 0.87 0.86 0.87 74 0.85 0.85 0.85 0.85 134

Tuned XGBoost 0.85 0.86 0.85 0.85 74 0.89 0.90 0.89 0.89 134

Notes: This table presents the performance of machine learning models evaluated on two datasets—one with complete features and one with selected 
features. “Tuned” models refer to those that were optimized via hyperparameter tuning using “RandomizedSearchCV” function. Metrics include 
accuracy, precision, recall, and F1‑score. The “weighted average” accounts for class imbalance, while “support” indicates the number of test samples. 
aIndicates the tuned RF model with selected features outperformed the other models.
Abbreviations: RF: Random forest; XGBoost: Extreme gradient boosting.

Table 3. Performance metrics of the diagnosis classifiers

Diagnostic 
classifier

Accuracy Weighted average

Precision Recall F1‑ 
score

Support

Medical history 
variables

0.52 0.43 0.52 0.46 111

Neuropsychological 
assessment variables

0.90a 0.91 0.90 0.90 134

Blood analysis and 
ApoE genotype 
variables

0.65 0.85 0.68 0.66 148

Notes: This table presents the performance of three classifiers, each 
constructed using a single feature group—medical history variables, 
blood analysis and ApoE genotype data, and neuropsychological/
clinical test results. The “neuropsychological assessment” classifier is 
further broken down into four individual cognitive tests: CDGLOBAL 
(clinical dementia rating), MMSCORE (mini‑mental state examination), 
LIMMTOTAL (logical memory immediate recall), and LDELTOTAL 
(logical memory delayed recall). All classifiers were developed using the 
tuned Random Forest algorithm.
Abbreviation: ApoE: Apolipoprotein E.
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Additionally, the notable recall scores (88%) confirm 
the model’s ability to correctly identify relevant cases in 
the dataset. The consistent F1-scores of 88% across both 
RF models further validate their balance between precision 
and recall, indicating their resilience to class imbalances 
and capacity to maintain predictive integrity. In contrast, 
the simple and tuned XGBoost models, while showing 
competitive performance, exhibited slightly lower accuracy 
scores of 86% and 85%, respectively. This indicates a slight 
reduction in overall predictive capability compared to the 
RF models. Nevertheless, the XGBoost models maintained 
comparable precision and recall scores—approximately 
87% and 86%, respectively—demonstrating a consistent 
ability to minimize false positives and accurately detect 
relevant cases. Despite this slight decrement in accuracy, 
the F1-scores of 87% (simple XGBoost) and 85% (tuned 
XGBoost) indicate a well-maintained balance between 
precision and recall, affirming their reliability to sustain 
predictive accuracy across multiple evaluation metrics.

Both the simple RF and simple XGBoost models, 
utilizing selected variables, exhibited comparable 
accuracies of 86% and 85%, respectively, suggesting similar 
predictive performance. However, upon tuning, the RF 
model demonstrated a notable improvement, achieving 
an impressive accuracy of 90% and outperforming the 
tuned XGBoost model, which attained a respectable score 
of 89%. This enhancement underscores the effectiveness 
of fine-tuning in optimizing the RF algorithm’s predictive 
capabilities, potentially making it a preferred choice in 
scenarios where maximizing prediction accuracy is crucial.

Additionally, evaluating precision, recall, and F1-score 
metrics provided a more comprehensive understanding 
of model performance beyond overall accuracy. Both the 
simple and tuned RF models consistently achieved higher 
precision, recall, and F1 scores compared to their XGBoost 
counterparts. Specifically, the tuned RF model yielded 
the highest scores across all three metrics, indicating 
superior ability to minimize false positives while effectively 
capturing relevant instances from the dataset. While the 
XGBoost models also demonstrated good precision, recall, 
and F1 scores, they slightly underperformed relative 
to the RF models, suggesting a moderate reduction in 
their effectiveness at minimizing misclassifications and 
accurately detecting relevant cases.

The predictive simple RF model from a previous 
study achieved an impressive accuracy of 96.05% for a 
binary classification task using all features of the AIBL 
non-imaging dataset.3 In comparison, our best model—
the tuned RF model using selected features—achieved 
a slightly lower accuracy of 90%. When comparing 
equivalent models from both studies, our simple RF model 

using all features yielded an accuracy of 88%. However, it 
is important to note that the prior study addressed a binary 
classification problem, whereas our study considered all 
three AD-related classes. This difference in classification 
scope likely accounts for the observed decrease in accuracy. 
The added complexity of distinguishing among three 
classes inherently increases the challenge and may reduce 
model performance relative to a binary setting.

Therefore, while our model’s accuracy may appear 
slightly lower, its ability to classify across multiple 
classes provides valuable insight into the severity of 
AD. Furthermore, in our study, the train–test split was 
performed prior to preprocessing, supporting the model’s 
ability to generalize to unseen data. In contrast, the 
previous study preprocessed the entire dataset, except for 
SMOTE, which may have contributed to their enhanced 
performance. Nonetheless, both studies consistently 
identified CDGLOBAL (CDR), MMSCORE (MMSE 
score), LIMMTOTAL (logical memory immediate recall), 
and LDELTOTAL (logical memory delayed recall) as the 
most informative predictors.

The comparison across classifiers based on medical 
history, neuropsychological assessment, and blood analysis 
with ApoE genotype variables offered valuable insights for 
medical diagnostics and predictive modeling. Initially, 
the classifier utilizing neuropsychological assessment 
variables emerged as the top performer, displaying 
impressive accuracy, precision, recall, and F1-score 
metrics, all exceeding 90%. This underscores the robust 
predictive capability of neuropsychological assessment 
data, highlighting its potential as a crucial diagnostic tool 
for AD. However, the classifier relying on medical history 
variables exhibited substantially lower performance 
metrics, with accuracy, precision, recall, and F1 scores 
hovering around 52%. This indicates its limited predictive 
accuracy when used in isolation. Despite its relatively lower 
accuracy, the classifier based on blood analysis and ApoE 
genotype variables demonstrated notable improvement. 
With precision at 85% and recall at 68%, resulting in an 
F1-score of 66%, the classifier shows promise in enhancing 
predictive accuracy and diagnostic capabilities by 
incorporating blood analysis and genetic data.

Both the existing and the present study identified that 
the classifier based on neuropsychological assessment 
variables as the most effective, consistently demonstrating 
exceptional performance metrics. Palmqvist26 underscored 
the significance of the MMSE score in predicting the 
transition from MCI to AD. Similarly, Bloch and Friedrich27 
concluded that cognitive test results, including MMSE 
and CDR values, were the most informative features for 
effectively classifying AD. These findings highlight the 
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critical role of cognitive assessments in the early detection 
and diagnosis of AD.

7. Conclusion and future work
In this study, non-imaging data from the AIBL were 
analyzed to classify AD into three classes: HC, individuals 
with MCI, and those diagnosed with AD. Extensive 
data cleaning and exploration were conducted to reveal 
underlying patterns and extract information using various 
data mining techniques and statistical methods, including 
correlation analysis, feature association analysis, feature 
importance analysis, and feature selection.

To address the challenge of class imbalance, synthetic 
oversampling methods were employed to generate artificial 
samples to balance the target classes. Subsequently, the data 
were modeled and evaluated using advanced non-parametric 
ML algorithms, such as RF and XGBoost, first with complete 
feature set and then with selected features obtained through 
the feature selection process. Fine-tuning techniques were 
applied to enhance predictive accuracy. The results from 
these models underwent thorough evaluation to determine 
the most effective algorithm. The tuned RF model emerged 
as the top performer, achieving an accuracy of 90%, with 
precision, recall, and F1 scores also reaching 90%.

Furthermore, to reduce the diagnosis cost of AD and 
provide valuable insights toward developing a more 
reliable and affordable diagnostic tool, the data were 
segmented into three main variable groups: medical 
history, neuropsychological assessment, and blood analysis 
with ApoE genotype variables. Corresponding ML models 
were then developed using the fine-tuned model of the 
best-performing algorithm. The “neuropsychological 
assessment” classifier emerged as the most effective, 
exhibiting an exceptional accuracy of 90%.

Beyond its strong classification performance, this study 
presents a replicable and cost-effective methodology that 
may benefit other research groups, clinical practitioners, 
and public health systems aiming to improve early detection 
of AD. By leveraging non-imaging data—including widely 
available neuropsychological assessments—our approach 
avoids the high costs and limited accessibility associated 
with imaging-based diagnostics. The use of interpretable 
ML models, combined with robust feature selection and 
data preprocessing techniques, facilitates deployment in 
diverse clinical or research settings without the need for 
extensive computational infrastructure. Moreover, the 
proposed methodology can be adapted to other populations 
or datasets, supporting generalizability studies and cross-
cohort validation efforts. This makes it particularly relevant 
for low-resource settings or large-scale screening efforts 
where rapid, accurate, and affordable tools are essential. 

Ultimately, this framework serves as a foundation for 
developing intelligent, personalized diagnostic support 
systems that prioritize early intervention and optimized 
resource allocation.

Given the time constraints of this research, explicit 
handling of outliers, multicollinearity, or distribution 
abnormalities was not performed. However, the selected 
models possess built-in capabilities to address these 
issues. Involving domain experts to directly address 
these factors could further enhance model performance. 
Moreover, the models were fine-tuned using the 
“RandomizedSearchCV” function; however, a more 
exhaustive approach, such as “GridSearchCV,”28 could 
potentially yield better parameters by exploring a wider 
range of combinations. Although this study focused solely 
on direct multi-class classification, alternative approaches 
such as one-versus-one and one-versus-the-rest29 may 
offer additional insights. Acknowledging these limitations 
provides a pathway for future research and further 
exploration of the problem.
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Appendices

Table A1. Classification performance of machine learning models using complete and selected features

Dataset 
type

Classification report

Complete 
features

Simple RF Tuned RF

Precision Recall F1‑score Support Precision Recall F1‑score Support

HC 0.95 0.93 0.94 40 HC 0.95 0.93 0.94 40

MCI 0.70 0.89 0.78 18 MCI 0.70 0.89 0.78 18

AD 1.00 0.75 0.86 16 AD 1.00 0.75 0.86 16

Macro‑average 0.88 0.85 0.86 74 Macro‑average 0.88 0.85 0.86 74

Confusion matrix Confusion matrix

37 3 0 37 3 0

2 16 0 2 16 0

0 4 12 0 4 12

Simple XGBoost Tuned XGBoost

Precision Recall F1‑score Support Precision Recall F1‑score Support

HC 0.93 0.93 0.93 40 HC 0.90 0.93 0.91 40

MCI 0.71 0.83 0.77 18 MCI 0.70 0.78 0.74 18

AD 0.92 0.75 0.83 16 AD 0.92 0.75 0.83 16

Macro‑average 0.85 0.84 0.84 74 Macro‑average 0.84 0.82 0.83 74

Confusion matrix Confusion matrix

37 3 0 37 3 0

2 15 1 3 14 1

1 3 12 1 3 12

Selected 
features

Simple RF Tuned RF

Precision Recall F1‑score Support Precision Recall F1‑score Support

HC 0.93 0.94 0.93 84 HC 0.97 0.93 0.95 84

MCI 0.63 0.70 0.67 27 MCI 0.69 0.89 0.77 27

AD 0.89 0.74 0.81 23 AD 0.95 0.78 0.86 23

Macro‑average 0.82 0.79 0.80 134 Macro‑average 0.87 0.87 0.86 134

Confusion matrix Confusion matrix

79 5 0 78 6 0

6 19 2 2 24 1

0 6 17 0 5 18

Simple XGBoost Tuned XGBoost

Precision Recall F1‑score Support Precision Recall F1‑score Support

HC 0.91 0.95 0.93 84 HC 0.97 0.93 0.95 84

MCI 0.63 0.63 0.63 27 MCI 0.68 0.85 0.75 27

AD 0.89 0.74 0.81 23 AD 0.90 0.78 0.84 23

Macro‑average 0.81 0.77 0.79 134 Macro‑average 0.85 0.85 0.85 134

Confusion matrix Confusion matrix

80 4 0 78 6 0

8 17 2 2 23 2

0 6 17 0 5 18

Abbreviations: AD: Alzheimer’s disease; HC: Healthy control; MCI: Mild cognitive impairment; RF: Random forest.
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Table A2. Classification report of diagnosis classifiers

Diagnosis classifier Classification report

Medical history 
variables

Precision Recall F1‑score Support

HC 0.60 0.80 0.68 69

MCI 0.09 0.04 0.06 24

AD 0.25 0.11 0.15 18

Macro‑average 0.31 0.32 0.30 111

Confusion matrix

55 10 4

21 1 2

16 0 2

Neuropsychological 
assessment variables

Precision Recall F1‑score Support

HC 0.97 0.93 0.95 84

MCI 0.69 0.89 0.77 27

AD 0.95 0.78 0.86 23

Macro‑average 0.87 0.87 0.86 134

Confusion matrix

78 6 0

2 24 1

0 5 18

Blood analysis and 
ApoE genotype 
variables

Precision Recall F1‑score Support

HC 0.78 0.85 0.81 107

MCI 0.19 0.14 0.16 22

AD 0.47 0.37 0.41 19

Macro‑average 0.48 0.45 0.46 148

Confusion matrix

91 11 5

16 3 3

10 2 7

Abbreviations: AD: Alzheimer’s disease; ApoE: Apolipoprotein 
E; HC: Healthy control; MCI: Mild cognitive impairment.
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